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A combined method is described for the electrical analog method

of simulating hear and mass transfer processes, using two nerworks:
On one netrwork of capacitors and resistors, heat transfer is simulated;
‘on the other, mass transfer, the cells of the networks heing intercon-
nected,

Methods of investigating and solving the systems of
differential equations representing heat and mass
transfer are based on the work of Lykov and his
school. One such method is that of the electrical analog
simulation of unsteady heat and mass transfer problems.
It is known that the simulation of nroblems in heat
transfer and mass transfer separately, without in-
terconnection, is carried out on electrical integrators
by creating the required boundary conditions at the
boundary of an RC network. However, it is not pos -
sible to solve a heat and mass transfer problem by
means of a single RC network.

In the present paper combined method is suggested
for solving such problems on two networks: On one
network of capacitors and resistors heat transfer is
simulated; on the other, mass transfer, the cells of
the networks being interconnected in such a way that «
change in potential in one network influences the change
in potential in the other. We shall ¢all this method the
method of combined simulation.

For definiteness we shall consider the equations of
heat and mass transfer in capillary-porous substanc s,
but a similar method can also be applied in other
fields, for example, in simulating mass and heat
transfer in solutions, binary gas mixtures, etec. Let
the capillary-porous substance be full partly of liquid
and partly of gas. Change of mass content at a certain
point occurs as a result of phase transition and dif-
fusion. Diffusion mass transfer arises from non-
uniformity in concentration and from nonuniformity in
temperature. During a change of heat content at each
point, account is taken of flow rate of heat due to
phase transition. The differential equations obeyed by
the temperature t(x, y, z, 7) [°C] and by the mass
transfer potential ¢ (x, y, z, 7) [°M] have the form {1, 2]
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We shall examine two networks of resistors and
capacitors CyR, and C,R, consisting of the same num-
ber of identically positioned cells (3}, Each nodal

point of the first network is coupled to the similarly
located nodal point of the second network through

a capacitor C. In the case of a one-dimensional pro~
blem, the electrical circuit has the form shown in
Fig. la. The voltage v simulates the temperature

t = Nyv{I), and the voltage w simulates the mass trans-
fer potential 4 = N®W(II). The electrical parameters
of a network may conventionally be regarded as being
distributed along the axis 0x,. On the axis 0x, a
certain scale of units and a certain characteristic
length of the analog, I @ are chosen. The resistance
of unit length of the first network is R;/Ax,, where
AXg is the length of one cell of the circuit. C;/Ax,,
Cz/Axe are determined similarly. We shall consider,
without introducing new notation, that R, is the re-
sistance of unit length of the electrical circuit (or of
unit cube in the case of a three-dimensional problem),
and C, is the electrical capacitance, also of unit length
{or of unit area in the case of a two-dimensional pro-
blem, ete,). We shall examine one cell of networks

I and II in the case of a two-dimensional problem (Fig.
1b). As in the case of @ one~dimensional problem, we
shall choose axes 0x, and 09 o We shall examine a
node in network I at which the voltage is v. On the
basis of Kirchhoff's law, the sum of the input currents
must be zero, i.e.,

[] cem g e g iy :ismisv (3>

The currents i3, iy are proportional to the capaci-
tances of the capacitors and to the derivative of po-
tential difference across the plates of the capacitor:

iy = CLAx Ay, é@_: ,
€

Iy = C/_\xeAye f_(ﬂ* 4
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Since, from Ohm's law, i = —(Ays/Ry)@V/0%,) in
the direction of the axis 0xq, and i = —(Ax./R)@Vv/0y,)
in the direction of the axis 0y,

iy - 2L Ay = — Ble Y Ax.
Oxe R, Ox,
Similarly,
e Axg dv
e Ry ()yé_ o
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Substituting the values of current found in 3), we
have

A*ye_oif/;x __A_.ﬁ@f_‘;Ayez
Ry oxg Ry 9y,
d(w—v)

Te

= CleeAyefé—U- —CAx Ay
o1,
In the second network, the equation for the potential
of current is derived in a similar way, and we obtain
the relation

Aye P 4 BxPw,
R, Oxfg ¢ R 6yi €
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These last relations give a system of equations re-
lating to the potentials v and w:

A S SR S N
dte R(C,-C) Ci+C 9,
dw 1 2 (N dv
__.—__.—V w.|- .
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The variables v and w, which simulate respectively
temperature t and mass transfer potential ¢, appear
in Egs. (4) and (5) only in the form of partial deriva-
tives, and therefore there may, generally speaking, be
different zero potentials (i.e. "earth" potentials for
networks I and II).

Equation (4), which simulates the equation of heat
conduction (1), is indentical in structure to these last
equations. We shall transform (5) by replacing dv/d’re
by its value from (4). After arranging similar terms,
we finally have

w1 ey C %
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Jw (Ci+0) Vi -k
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This system of differential equations for the electrical
potentials v and w is similar to the original heat and
mass transfer equations. Equations (6) and (7) have
been derived for the case of a two-dimensional model,
but they are also valid for the one-dimensional scheme
shown in Fig, 1a, andfor athree-dimensional scheme;
then the Laplace operator has the form

by P Po P
v 6x2eT0yZ azi

We shall introduce similarity parameters of the
heat and mass transfer equations (1) and (2):

Fo = a,v/I*; Lu =a,/a; Ko* = erC, 6%/C 1% Pn = 3g1*/8%

In order to write (1) and (2) in dimensionless parame-
ters, we shall introduce the relative magnitudes (sim-
plexes)

X =xll, Y=y/l; © =895, T t)t*.

In terms of these dimensionless quantities, (1) and (2)
take the form

aT 2 ., 00
= v2 T+ Ko* ) (8)
dFo vt dFo
00 = Luy?® + LuPny?T. 9)
dFo

The Laplace operators inthese equations correspond
to partial derivatives also with respect to the dim-
ensionless coordinates X = x/I, Y = y/l. The equations
determine the two dependent variables ¢ and T from
the independent ones Fo, X, Y (and Z in the case of a
three~-dimensional problem).

We shall convert Egs. (6) and (7) also to dimension-
less quantities in such a way that the equations obtained
will be identical with (8) and (9). To do this, we shall
transfer in the model to dimensionless coordinates and
dimensionless potentials:

X = x/lo, Y= yolle, V =viv®, We-wjws,  (10)

Then (6) takes the form

oV VY CR 2 (C, +Cywe W
\0X2 T oY?, €+ Cyvv 01,
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e

Introducing the two similarity parameters

Foo— "¢ Koo S ¥
R (C,+0C) g C,+C vu*
the last equation takes the form
v 2 oW
—=— = ¢*V- Ko¥ , 12
d Fo v © dFo (12)

which is identical with (8).

If the assumed dimensionless variables and para-
meters (10) and (11) are inserted into the equation
for the electrical potential w (7), it takes the form

W _R(C+O) 1

dF0 Ry (Ca+C) [1_ c ]
(Ci+C) (G +C)

VW

(13)
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Fig. 1. Electrical diagram of the analog: a) for a one-dimensional
problem; b) a cell of the networks for a two-dimensional problem.

In this relation the derivatives in the Laplace operator
have been written, as they also were in (12), in terms
of the dimensionless coordinates X and Y. To make
(13) identical with (9), it is necessary that

R (C,+C) |
U= N L3
Ry(C: + C) P_ ¢ ]
(C1++C) (C: + C)
and
o el
R1 (C.l -t C) w*

which may be verified directly. The equation of elec-
trical potential in the second network and in dimension-
less coordinates takes the form

W _ Luy* W4 LuPny?V,
dFo

Thus, in order that the processes in the electrical
analog and the heat and mass transfer processes shall
be similar and be described by the same differential
equations, it is necessary for the following four sim-
ilarity parameters to be equal:

Fo =a,t/l* = w%/R, (C; + C) &2,

Lu=2m . Ry (€ +C)
a,  Ri(C:+C)[1—CUC +C)(C+ O

Ko¥ == £7C, §%/C, 1% = Ca*/(Cy -+ C) v,
Pn = 8, £5/8% = CR,v*/(C, + C) Ryws.  (14)

The physical meaning of the similarity parameters
Fo and Ko* becomes clear if we recall that

T =Nty = N2, €y o= Ney (G 4 C), Ag = Vi, R—l :
1
9= IV.@ w, = .‘V, v.

At first sight it would seem that Lu = am/a should
be equal to the ratio Ry(C; + C)/R,(Cy + C) without the
factor [1-C%/(C, + C)+(C, + C)] in the denominator.

But this is not so. In order to understand the mechan-
ism of mass transfer in the analog, we shall examine
the similarity of the heat and mass flux vectors j, and
im to the electric current vectors. In regard to the
heat transfer process, this similarity is simple: The
heat flux is

ip = —h, VL. (15)

We shall introduce the dimensionless heat fluxes
1, =1, -t/k, t5,
Then (15) in dimensionless coordinates takes the form
I, = —v¢T.

In the analog, in first network, the current i; satisfies
the relation

. 1
h=———Vv,

Ry
or, in dimensionless coordinates,
I = il ‘Rl lejl/'::':,

and when the similarity parameters are equal, the
equations are identical and the vectors must be equal,
i.e.,

Iy =g lhg 17 =iy Ry lghu®.
On the other hand, the mass transfer vector is
Jm = = Ay VO — hy, 8V L. (16)
We shall introduce the dimensionless mass flux vector
1, = jn ik, 0%,
Then (16) takes the form

I,=—vO—PnyT. (17)
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Taking into account that when similarity obtains
BRI = —yV=—yT,

and also,
i Ryl fw* = —yW=—vy8,

which follows from the equality i, = -Vw/R,, and we
have, from (17)

lm = ingl/w*‘-(“PniI RIZ/U*. (18)

Taking into account that in the analog Pn = CRyv*/
(C{ + C)Ryw* (14), we have, from (18)

[R, C )
- L]

which means that the electric current simulating the
mass flux passes not only through the second network,
but also through the first, where it is reduced by the
factor C/(C, + C). Then the directions of i, and i,

do not in general coincide.
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NOTATION

7) time; aq) thermal diffusivity; €) ratio of mass change due to a
phase transition in the neighborhood of a certain point to the total mass
change; r) specific heat of phase transition; C;,) isothermal mass
capacity; Cg) heat capacity; ap;) potential conductivity of mass trans-
fer; 6@) thermal gradient coefficient; 1) characteristic length; t* and
%) some specific temperawre and mass transfer potential drops; v*
and w*) some specific potential differences; Ko*) modified Kossovich
number,
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